Проект

Beltel Datanomics разработал модель прогнозирования для товаров с прерывистым спросом для «Фореста»

Заказчики: Форест (For-Est)

Магнитогорск; Торговля

Подрядчики: Beltel Datanomics
Продукт: Проекты ИТ-аутсорсинга

Дата проекта: 2022/06 — 2022/12
Технология: ИТ-аутсорсинг
подрядчики - 850
проекты - 2653
системы - 181
вендоры - 122

2022: Разработка модели прогнозирования для товаров с прерывистым спросом

Компания Beltel Datanomics 24 января 2023 года сообщила о разработке модели прогнозирования для товаров с прерывистым спросом.

Перед Beltel Datanomics стояла задача проверить применимость автоматического прогнозирования для товаров с прерывистым и нерегулярным спросом, к которым относится пневматическое оборудование и крепеж, поставляемые компанией «Форест».

В ходе проекта был проведен исследовательский анализ данных продаж, который показал:

  • сильную вариативность в данных, вызванную наличием большого количества дней с нулевым спросом;
  • отсутствие ярко выраженной годовой сезонности в продажах;
  • аномалии в данных в виде резкого роста продаж в один день, что объясняется удачной маркетинговой кампанией.

Все указанные пункты говорят о высоком факторе случайности в продажах для большинства пар распределительный центр (РЦ)/товар и сложности в применении классических подходов к прогнозированию временных рядов. Поэтому была разработана и реализована модель прогнозирования спроса на два месяца и два квартала вперед, которая учитывает не только изменение объем продаж, но и работает с частотой спроса данной позиции, а также чистит исторические данные от аномально больших продаж.Как с помощью EvaProject и EvaWiki построить прозрачную бесшовную среду для успешной работы крупного холдинга

Валидация моделей проводилась на 12 периодах по два месяца. Для каждого тестового периода рассчитывались метрики качества модели (MAE, SMAE, RMSE, SRMSE, средний дефицит и профицит). Кросс-валидация на 12 тестовых примерах показала лучшие метрики качества для построенной модели Datanomics, чем простые статистические модели, такие как Прогнозирование предыдущими значениями (Naive) и Модель экспоненциального сглаживания (SES), например, для метрики SMAE на 15%, а для среднего профицита на 20%.

Конечной целью проекта является формирование заказа для пополнения всех РЦ определенными позициями на два месяца/квартала вперед.

«
Мы стремимся к применению передовых технологий и автоматизации процессов с целью повышения эффективности предприятия, - сказала Александра Синицына, менеджер проекта компании ФОРЕСТ, - Данный проект был для нас экспериментом. Мы хотели проверить применимость автоматического прогнозирования для товаров с нашими особенностями спроса. Проект не был гладким – потребовались усилия на этапе выгрузки данных, однако мы подтвердили гипотезу и получили качественный результат прогноза в разрезе РЦ/товар и детализацию дальнейших шагов развития. Отдельно хотелось бы отметить высокий уровень экспертизы специалистов Beltel Datanomics.

»